COPERNICUS MONITORING ENVIRONMENTAL INDICATORS

4 EXAMPLES FROM CAMS

Vincent-Henri Peuch (ECMWF)

Atmosphere Monitoring
Copernicus for SDGs, International Agreements and Convention, 24/01/2018

REASONS TO CARE ABOUT ATMOSPHERIC COMPOSITION

Presentation
by O. Tarasova

Exciting times for Earth Observation!

Example: NO_{2} tropospheric column from Copernicus Sentinel-5P (17/01/2019)

Observations are essential, but direct use is limited:

- gaps in space and time
- observed quantities may not be directly relevant (vertical column vs nose-level concentration) or not representative (middle of a street...)

What services do:

- combine all observations with model to provide a consistent "picture"
- re-analyse observations from past periods with latest modelling tools
- Forecast/predict and provide additional info
- 1. WMO, WHO and UNEP / on Air Quality and Health at the global scale
- 2. DG-CLIMA and WMO / on monitoring the ozone layer
- 3. DG-ENV, DG-JRC and EEA / on drivers of European air quality
- 4. WMO IG3IS and IPCC / on inverse modelling of surface fluxes of the main greenhouse gases
- WMO, WHO and UNEP / on Air Quality and Health at the global scale

- Exposure of population to fine particulate matter is assessed annually as part of the "Global Burden of Diseases" exercise.
- Work with Uni. Exeter (G. Shaddick, J. Salter et al.)

WHY USING CAMS?

Surface observations

Main Pro's

- Direct measurement of the relevant quantity (PM2.5 or PM10)
- Precision \& accuracy (if devices are well maintained though)

Main Con's • Poor coverage in the developing world

- Often only annual mean values are shared
- Representativeness generally unknown
- No source apportionment information
- Lack of norms (height...)

Satellite observations

- Global spatial coverage (apart from clouds)
- Temporal coverage, with a typical daily revisit cycle for Low-EarthOrbiting satellites
- Indirect measurement (radiance), need for retrieval. And the geophysical quantity retrieved is generally integrated vertically (e.g. troposphere content) and it is very challenging to infer a near surface value from this
- Precision \& accuracy
- Fairly low spatial resolution

CAMS Reanalysis

- Global coverage
- Hourly values
- Combines optimally different source of observations using advanced modelling of atmospheric processes
- Added model information
- Low spatial resolution (currently 80 km , NRT analyses 40 km)
- Influence of a priori information on emissions
- Precision \& accuracy

This work

- Downscale using population and land-use \& elevation proxies
- Calibration using independent (non assimilated) surface observation

Atmosphere Monitoring

(J. Salter et al.)

```
NEW (AND USEFUL) INSIGHTS ON PM
```

Atmosphere Monitoring

PM2.5 from dust

PM2.5 natural

PM2.5 anthropogenic

GLOBAL AIR QUALITY INFORMATION

Atmosphere Monitoring
nature

COMMENT

Five steps to improve air-quality forecasts
A worldwide network for monitoring and modelling air pollution would reduce its dramatic toll on health and food production, urge Rajesh Kumar and colleagues.

\qquad

 Foreasss or hazrardous alr pollutbon are
cructal to help reduce exposure. Vulnercrucar to help reduce exposurare vuner

The
Weather
Channel
$06: 55$
$\underset{\text { Commission }}{\text { European }}$

- DG-CLIMA and WMO / on monitoring the ozone layer
- Vienna Convention, Montreal protocol
- Context: banned emissions of Ozone Depleting Substances (but needs to be enforced: CFC-11 detected in 2018...); climate change and ozone layer interactions
- Key strength of ECMWF/CAMS system (no equivalent regarding amount of data used)

MONITORING THE OZONE LAYER FOR THE EU

Atmosphere Monitoring

CAMS webpage in support of DG-CLIMA on the ozone layer

Discussion Chats Photos Events
Paul Newman shared a link. 28 September - 0 The Copernicus Programme has a good layer web site that parallels our ozonewatch.gsfc.nasa.gov site. Good fo following the ozone hole. https://
atmosphere. copernicus.eu/monitorin atmosphere.c
ozone-layer
(2)

Paul Newman shared a link. 7) 6 December - \boldsymbol{O}

TROPOMI Ozone data is now being

12 October
putacows osimpal

15 November

Southern Hemisphere ozone column minimum

Minimum temperature at 50 hPa south of -60° mandate/focus-areas/environment/ozone

Ozone

Ozone is a form of oxygen with molecules carrying three atoms Instead of two. Ozone is found both in the troposphere, the lower 10 km of the atmosphere, and in the stratosphere, 10 to 50 km above the ground. Ozone acts as a shield protecting us against harmful ultraviolet radlation from the Sun.

In the current configuration, chemistry originating from the TM5 CTM, has been fully integrated into the IFS forecasting model. This version applies 54 tracers and 120 reactions and focuses on tropospheric ozone-CO-NMVOC chemistry. Stratospheric ozone is modelled with a linearized scheme. A more extensive description can be found in this document.

WMO's public website features some headline CAMS daily operational products (including ozone layer) since July 2018.

- DG-ENV, DG-JRC and EEA / on drivers of European air quality
- CLRTAP and European Air quality Directives
- Aims: operational management and information to the public; support Member States for performing their reporting duties; provide operational source apportionment information
- Work with Météo-France, INERIS (FR), Met Norway and many others

CAMSWORKS WITH THE EEA

The EEA provides information about air quality observed across Europe in the last 48 h and forecast from CAMS for the next 72h. Seamless integration in progress.

http://discomap.eea.europa.eu/map/AQI/ViewerCAMS/

SOURCE APPORTIONMENT INFORMATION

Atmosphere Monitoring

For the European capitals, daily analysis of local versus large scale contribution to air pollutant concentrations. Where does pollution come from? What is the chemical composition of PM?

(M. Gauss et al.)
※ECMWF

European

Atmosphere

What happens today if emissions from traffic are cut by 50%

What happens today if emissions from agriculture are cut by 50\%

- WMO IG3IS and IPCC / on inverse modelling of surface fluxes of the main Greenhouse gases $\left(\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}\right)$

- Inverse modelling of atmospheric observations.
- Help to close the loop at national level? The next challenge: disentangling human emissions (proposed Copernicus CO2 emissions service)
- Work with CEA (FR), NO (NL), NILU(NO)

MONTHLY GLOBAL SURFACE FLUXES

Atmosphere Monitoring

(i) apps.ecmwf.int/datasets/data/cams-ghg-inversions/

About
Conditions of use
Documentation
Other CAMS datasets

CAMS Greenhouse Gases Flux Inversions
Opernicus
Please login before retrieving data from this dataserver.
Select an interval between 1979-01-01 and 2015-12-31
MACC GHG flux inversions
CAMS near-real-time
CAMS Global Fire Assimilation
System (GFAS)
MACC reanalysis

See also...

CAMS web site
User Support

Navigation

Home

Public Datasets
Job list

See also...

Access Public Datasets
General FAQ
WebAPI FAQ
Accessing forecasts
GRIB decoder

Atmosphere Monitoring

$\mathrm{CAMS} \mathrm{XCO}_{2}$ and OCO-2 ACOS XCO 2 (NASA/JPL) nadirmode retrievals vs. independent TCCON groundbased observations, year 2015
(F. Chevallier et al.)

C2a
\ldots ECMWF

European

SURFACE FLUXES OF CO2

Atmosphere Monitoring

Case of France (2001-2010). Interannual variability is linked to large-scale climate patterns over the Atlantic (Bastos et al., 2016).

France

Total natural flux (CAMS) $\pm 1 \sigma$
Land use, land use change and forestry (UNFCCC)
Fossil fuel (UNFCCC)
(F. Chevallier et al.)

